Fluid and electrolyte management

Dr. Rezzan Khan
Consultant Nutritionist
Shifa International Hospital
<table>
<thead>
<tr>
<th></th>
<th>Hypovolemia</th>
<th>Hypervolemia</th>
<th>Hypoproteinemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Extracellular fluid deficit</td>
<td>Extracellular fluid excess</td>
<td>Loss of oncotic pressure leads to hypovolemia</td>
</tr>
<tr>
<td>Causes</td>
<td>Hemorrhage</td>
<td>Congestive heart failure</td>
<td>Decreased protein intake</td>
</tr>
<tr>
<td></td>
<td>Overdiuresis</td>
<td>Renal failure</td>
<td>Increased protein loss</td>
</tr>
<tr>
<td></td>
<td>Vomiting/diarrhea</td>
<td>Liver disease</td>
<td>Liver/kidney disease</td>
</tr>
<tr>
<td></td>
<td>Third-spacing (ascites, burns)</td>
<td>Overzealous IV fluids</td>
<td>Burns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium overload</td>
<td>Infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hemorrhage</td>
</tr>
<tr>
<td>Clinical findings</td>
<td>Dry mucous membranes</td>
<td>Sudden weight gain</td>
<td>Weight loss</td>
</tr>
<tr>
<td></td>
<td>Sudden weight loss</td>
<td>Pitting edema</td>
<td>Impaired healing</td>
</tr>
<tr>
<td></td>
<td>Oliguria</td>
<td>Tachycardia</td>
<td>Edema</td>
</tr>
<tr>
<td></td>
<td>Tachycardia</td>
<td>Tachypnea</td>
<td>Immune compromise</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>Elevated blood pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevated jugular venous pressure</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td>Correct underlying conditions</td>
<td>Correct underlying conditions</td>
<td>Complete nutritional assessment</td>
</tr>
<tr>
<td></td>
<td>IV volume replacement</td>
<td>Semi-Fowler’s position</td>
<td>High-protein diet</td>
</tr>
<tr>
<td></td>
<td>Isotonic fluid (0.9% NS, Lactated Ringers)</td>
<td>Administer diuretics</td>
<td>IV replacement</td>
</tr>
<tr>
<td></td>
<td>Whole blood, PC, plasma</td>
<td>Limit sodium</td>
<td>Whole blood</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess for signs and symptoms of pulmonary edema: crackles in lungs, cough, increased respiratory effort</td>
<td>Albumin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8-2. Types of Fluid Imbalances
Learning Objectives

- Concept of Fluid & Electrolyte Balance
- Body fluid and electrolyte homeostasis
- Differentiate between hypovolemic, euvoletic, and hypervolemic hyponatremia
- Recommend appropriate changes in nutrition support formulations for treatment of electrolyte abnormalities
Functions of Body Fluid

- **Fluid balance** ensures that the body stays hydrated; **important** for normal functioning of the body and optimal health.
- Maintaining **fluid balance** is vital for physical and mental performance.
- Water is one of the most essential nutrients that the body requires.
Why Fluid balance is important

- Loss of 10% body fluid = 8% weight loss
 SERIOUS
- Loss of 20% body fluid = 15% weight loss
 FATAL
- Fluid gained each day should = fluid lost each day
 (2 –3L/day average)
- What is the minimum output per hour necessary to maintain renal function? 30 ml/hr
More to consider?

- **Age**
 - Infants
 - Older adults

- **Prior medical history**
 - Acute illness
 - Chronic illness
 - Environmental factors
 - Diet
 - Lifestyle
 - Medications
Total Body Water

- Fetus: 90% water
- Premie: 80% water
- Term: 70–75% water
- Young children: 65–70%
- Adolescents: 60% water

Lean individuals: greater percentage of body weight is water
Fat individuals: smaller percentage of body weight is water
Predictive Equations for Estimating Adult Fluid Requirements

<table>
<thead>
<tr>
<th>Method</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Surface Area (BSA) Method</td>
<td>1,500 mL/m² x BSA = mL/day</td>
</tr>
<tr>
<td>Recommended Dietary Allowance/Adolph Method</td>
<td>1 mL/kcal of intake = mL/day</td>
</tr>
<tr>
<td>Fluid Balance Method</td>
<td>Urine output + 500 mL/day</td>
</tr>
<tr>
<td>Weight Method</td>
<td>25–35 mL/kg/day</td>
</tr>
<tr>
<td>Age–adjusted Weight Method</td>
<td>Average healthy adult: 30–35 mL/kg/day</td>
</tr>
<tr>
<td></td>
<td>Adult 55–65 years old: 30 mL/kg/day</td>
</tr>
<tr>
<td></td>
<td>Adult > 65 years old: 25 mL/kg/day</td>
</tr>
<tr>
<td>Obese Adult Patient Method</td>
<td>[(kg body weight–20) x 15] + 1,500 mL/day</td>
</tr>
</tbody>
</table>
Baseline Fluid Requirement

- Afebrile 70-kg Adult: 35 mL/kg/24 h
- If not a 70-kg Adult: Calculate the water requirement according to Kg Method?
 - For the first 10 kg of body weight: 100 mL/kg/d plus
 - For the second 10 kg of body weight: 50 mL/kg/d plus
 - For the weight above 20 kg: 20 mL/kg/d
Homeostasis

- State of equilibrium in body
- Naturally maintained by adaptive responses
- Body fluids and electrolytes are maintained within narrow limits
Triggers and actions of antidiuretic hormone (ADH)

Effective circulating volume
Action of the renin–angiotensin–aldosterone system (RAAs)

Effective circulating volume
Actions of atrial natriuretic peptide (ANP)

*Effective circulating volume
Fluid Compartments of the Body

Extracellular
(20% of body weight)

Plasma 5%
Interstitial 15%

Intracellular
(40% of body weight)
FIGURE 31-1 Distribution of body water. The extracellular space includes the vascular compartment and the interstitial spaces.
The intravascular volume of an average 70 kg man is approximately 5 L of which 2 L is red cell volume and 3 L plasma volume. The intravascular, extracellular fluid compartment equilibrates with the extracellular, extravascular fluid compartment (ECF ~ 11 L), with a reduction in one compartment leading to a reduction of the other.

Plasma to interstitial fluid shift results in *edema*

Water deficit (increased ECF) Associated with symptoms that result from cell shrinkage as water is pulled into vascular system

Water excess (decreased ECF) Develops from gain or retention of excess water
Plasma to interstitial fluid shift results in *edema*

Water deficit (increased ECF) Associated with symptoms that result from cell shrinkage as water is pulled into vascular system

Water excess (decreased ECF) Develops from gain or retention of excess water
Fluid Spacing

- First spacing
 - Normal distribution of fluid in ICF and ECF
- Second spacing
- Abnormal accumulation of interstitial fluid (edema)
- Third spacing
 - Fluid accumulation in part of body where it is not easily exchanged with ECF; fluid trapped and unavailable for functional use (ascites)
3rd spacing, fluid shift from intravascular to interstitial space; edema
Severity grading of pitting edema using pit depth.
Treating an ECF requires aggressive management of sepsis, fluid, and renal function; nutritional, electrolyte, and metabolic support; management of fistula output; assessment of fistula anatomy; and when appropriate, corrective surgery.
Types of Fluid Imbalances

<table>
<thead>
<tr>
<th></th>
<th>Hypovolemia</th>
<th>Hypervolemia</th>
<th>Hypoproteinemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Extracellular fluid deficit</td>
<td>Extracellular fluid excess</td>
<td>Loss of oncotic pressure</td>
</tr>
<tr>
<td></td>
<td>leads to hypovolemia</td>
<td></td>
<td>leads to hypovolemia</td>
</tr>
<tr>
<td>Causes</td>
<td>Hemorrhage, Overdiuresis, Vomiting/diarrhea, Third-spacing (ascites, burns)</td>
<td>Congestive heart failure, Renal failure, Liver disease, Overzealous IV fluids, Sodium overload</td>
<td>Decreased protein intake, Increased protein loss, Liver/kidney disease, Burns, Infection, Hemorrhage</td>
</tr>
<tr>
<td>Clinical findings</td>
<td>Dry mucous membranes, Sudden weight loss, Oliguria, Tachycardia, Orthostatic hypotension</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types and causes of dehydration

<table>
<thead>
<tr>
<th>Type</th>
<th>Description and Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotonic</td>
<td>Equal loss of sodium and water</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal illness</td>
</tr>
<tr>
<td>Hypertonic</td>
<td>Most common cause</td>
</tr>
<tr>
<td></td>
<td>Water loss exceeds sodium loss</td>
</tr>
<tr>
<td></td>
<td>Fever</td>
</tr>
<tr>
<td></td>
<td>Limited fluid intake</td>
</tr>
<tr>
<td>Hypotonic</td>
<td>Sodium loss exceeds water loss</td>
</tr>
<tr>
<td></td>
<td>Diuretic use</td>
</tr>
</tbody>
</table>
Fluid Volume Deficit (Hypovolemia, Isotonic Dehydration)

- **Common Causes**
 - Hemorrhage
 - Vomiting
 - Diarrhea
 - Burns
 - Diuretic therapy
 - Fever
 - Impaired thirst
Clinical Manifestations

- **Signs/Symptoms**
 - Weight loss
 - Thirst
 - Orthostatic changes in pulse rate and bp
 - Weak, rapid pulse
 - Decreased urine output
 - Dry mucous membranes
 - Poor skin turgor
Encourage patient fluid intake of 1,000–3,000 ml daily (e.g., filling a pitcher each day and making sure it is empty at the end of the day)

Monitor patient lab values for changes.

-- Increased BUN/creatinine
-- Increased serum sodium
-- Increased serum osmolarity
-- Increased hematocrit.

• Monitor patient urine output.
• Monitor patient for constipation or diarrhea.
• Weigh patient daily.
• Teach patient to drink despite not feeling thirsty, particularly if taking diuretics.
• Advise patient to avoid alcoholic, carbonated, and caffeinated beverages, which can increase diuresis.
Fluid Management

- Diet therapy – Mild to moderate dehydration. Correct with oral fluid replacement.
- Oral rehydration therapy – Solutions containing glucose and electrolytes. E.g., Pedialyte, Rehydralyte.
- IV therapy – Type of fluid ordered depends on the type of dehydration and the clients cardiovascular status.
<table>
<thead>
<tr>
<th>Characteristics of Three Types of Hyponatremia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypovolemic Hyponatremia</td>
</tr>
<tr>
<td>Laboratory Values</td>
</tr>
<tr>
<td>- Serum osmolarity low (<280 mOsm/L)</td>
</tr>
<tr>
<td>- Urine osmolality >450 mOsm/kg</td>
</tr>
<tr>
<td>ECF Volume Symptoms</td>
</tr>
<tr>
<td>- Tachycardia, hypotension, decreased skin turgor</td>
</tr>
<tr>
<td>Associated Medical Conditions</td>
</tr>
<tr>
<td>- Urine Na >20 mEq/L: renal losses, Addison disease, cerebral salt wasting, osmotic diuresis</td>
</tr>
<tr>
<td>- Urine Na <20 mEq/L: vomiting, diarrhea, high-output ostomies, enterocutaneous fistulas, burns, pancreatitis</td>
</tr>
<tr>
<td>ECF Volume Status</td>
</tr>
<tr>
<td>- Total body water ↓</td>
</tr>
<tr>
<td>- Total body sodium ↓</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>- Infusion of hypertonic or isotonic saline; discontinue diuretics</td>
</tr>
</tbody>
</table>

| **Euvolemic Hyponatremia** |
| Laboratory Values |
| - Serum osmolarity low (<280 mOsm/L) |
| - Urine osmolality >100 mOsm/kg |
| with urine Na >20 mEq/L OR <100 mOsm/kg with urine Na >20 mEq/L |
| ECF Volume Symptoms |
| - No edema; normal pulse, blood pressure, skin turgor |
| Associated Medical Conditions |
| - Urine Na >20 mEq/L: hypothyroidism, SIADH, stress, secondary adrenal insufficiency |
| - Urine Na <20 mEq/L: primary polydipsia, low solute intake (beer potomania, “tea and toast” diet) |
| ECF Volume Status |
| - Normal total body Na |
| Treatment |
| - Fluid restriction |

| **Hypervolemic Hyponatremia** |
| Laboratory Values |
| - Serum osmolarity low (<280 mOsm/L) |
| - Urine osmolality >100 mOsm/kg |
| ECF Volume Symptoms |
| - Edema |
| Associated Medical Conditions |
| - Urine Na >20 mEq/L: acute or chronic renal failure |
| - Urine Na <20 mEq/L: CHF, cirrhosis, nephrotic syndrome |
| ECF Volume Status |
| - Total body water ↑ |
| - Total body Na ↑ |
| Treatment |
| - Dialysis for renal failure; fluid and sodium restriction |

CHF = congestive heart failure, ECF = extracellular fluid, Na = sodium, SIADH = syndrome of inappropriate antidiuretic hormone secretion

Fluid Volume Excess

Common Causes:
- Congestive Heart Failure
- Early renal failure
- IV therapy
- Excessive sodium ingestion
- SIADH
- Corticosteroid
Clinical Manifestations

- **Signs/Symptoms**
 - Increased BP
 - Bounding pulse
 - Venous distention
 - Pulmonary edema
 - Dyspnea
 - Orthopnea (diff. breathing when supine)
 - Crackles
Treatment/Interventions (FVE)

- Drug therapy
 - Diuretics may be ordered if renal failure is not the cause.
- Restriction of sodium and saline intake
- I/O
- Weight
Specific Replacement Fluids replace excessive, nonphysiologic losses.

- **Gastric Loss (Nasogastric Tube, Emesis):** D5 1/2 NS with 20 mEq/L (mmol/L) potassium chloride (KCl)
- **Diarrhea:** D5LR with 15 mEq/L (mmol/L) KCl. Use body weight as a replacement guide (about 1 L for each 1 kg, or 2.2 lb, lost)
Isotonic Crystalloid

- Normal Saline (0.9%)
 (Na 154 meq/L, Cl 154 meq/L)

- Lactate Ringer's (Hartman's solution)
 (Na 130 meq/L, Cl 109 meq/L, K 4 meq/L, Lactate 28 meq/L, Ca 3 meq/L)

- Normosol-R (Na 140 meq/L, Cl 90 meq/L, K 5 meq/L, Mg 3 meq/L)
 Plasmalyte (Na 140 meq/L, Cl 98 meq/L, K 5 meq/L, Mg 3 meq/L)
Isotonic Crystalloid

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Glucose (g/L)</th>
<th>Na⁺</th>
<th>Cl⁻</th>
<th>K⁺</th>
<th>Ca²⁺</th>
<th>HCO₃⁻</th>
<th>Mg²⁺</th>
<th>HPO₄²⁻</th>
<th>kcal/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅W (5% dextrose in water)</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>170</td>
</tr>
<tr>
<td>D₁₀W (10% dextrose in water)</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>340</td>
</tr>
<tr>
<td>D₂₀W (20% dextrose in water)</td>
<td>200</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>680</td>
</tr>
<tr>
<td>D₅₀W (50% dextrose in water)</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1700</td>
</tr>
<tr>
<td>½ NS (0.45% NaCl)</td>
<td>—</td>
<td>77</td>
<td>77</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3% NS</td>
<td>—</td>
<td>513</td>
<td>513</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NS (0.9% NaCl)</td>
<td>—</td>
<td>154</td>
<td>154</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D₅¼NS</td>
<td>50</td>
<td>38</td>
<td>38</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>170</td>
</tr>
<tr>
<td>D₅¼NS (0.45% NaCl)</td>
<td>50</td>
<td>77</td>
<td>77</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>170</td>
</tr>
<tr>
<td>D₅½NS (0.9% NaCl)</td>
<td>50</td>
<td>154</td>
<td>154</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>170</td>
</tr>
<tr>
<td>D₅LR (5% dextrose in lactated Ringer’s)</td>
<td>50</td>
<td>130</td>
<td>110</td>
<td>4</td>
<td>3</td>
<td>27</td>
<td>—</td>
<td>—</td>
<td>180</td>
</tr>
<tr>
<td>Lactated Ringer’s</td>
<td>—</td>
<td>130</td>
<td>110</td>
<td>4</td>
<td>3</td>
<td>27</td>
<td>—</td>
<td>—</td>
<td><10</td>
</tr>
<tr>
<td>Ionsol MB</td>
<td>50</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>—</td>
<td>23</td>
<td>3</td>
<td>3</td>
<td>170</td>
</tr>
<tr>
<td>Normosol M</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>13</td>
<td>—</td>
<td>16</td>
<td>3</td>
<td>—</td>
<td>170</td>
</tr>
</tbody>
</table>
Effects of water status on cell size. A, Hypotonic solution (H₂O excess) results in cellular swelling. B, Isotonic solution (normal H₂O balance) results in no change. C, Hypertonic solution (H₂O deficit) results in cellular shrinking.
Intravascular and interstitial pressure effect on fluid movement
Four Steps for Diagnosis and Treatment of Hyponatremia

- The goal is to find and correct the underlying cause.
- 1. Determine presence and severity of signs and symptoms.
- 2. Determine speed of onset: acute onset necessitates rapid correction of sodium; chronic onset necessitates slow correction of sodium.
- 3. Determine osmolality (tonicity): rule out isotonic and hypertonic osmolality.
- 4. Establish extracellular fluid volume status.
Hyponatremia Symptoms Associated With Serum Sodium Concentrations

<table>
<thead>
<tr>
<th>Serum Sodium Concentrations</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 to 130 mEq/L</td>
<td>No symptoms, nausea, malaise, vomiting, disorientation</td>
</tr>
<tr>
<td>115 to 125 mEq/L</td>
<td>Headache, lethargy, obtunded, agitation, confusion, altered mental status</td>
</tr>
<tr>
<td><115 mEq/L</td>
<td>Seizures, coma, respiratory distress, death</td>
</tr>
</tbody>
</table>

Symptoms vary widely and are patient-specific.

“Sodium and Fluids Disorders”, Clinical Nutrition Week 2012,
Calculations to Estimate Sodium Deficit and Treatment for Case Study

Initial Data:
- 49-year-old female
- Weight: 50 kg
- Plasma sodium day 1: 123 mEq/L
- Plasma sodium day 2: 126 mEq/L
- Day 1 IV fluids: 1 L normal saline (sodium content is 154 mEq/L) (3)
- Day 2 IV fluids: 1.5 L normal saline

Step 1: Calculate total body water
Total Body Water (TBW) for men: 0.6 L/kg x weight in kg
Total Body Water (TBW) for women: 0.5 L/kg x weight in kg (3) Calculation for DD: 0.5 x 50 = 25 L

Step 2: Calculate sodium deficit
Sodium deficit: TBW x ([desired plasma sodium – current plasma sodium])*(3)
Calculation for DD: 25 x (133 – 123) = 25 x 10 = 250 mEq

Step 3: Calculate how much 1 L normal saline** initially increases plasma sodium (7): Increase in plasma sodium = (sodium in NS – plasma sodium) ÷ (TBW + 1) Calculation for DD: (154 – 123) ÷ (25 +1) = 31 ÷ 26 = 1.19mEq/L
Hypervolemia

- **Hypervolemia**, or fluid overload, is the medical condition where there is too much fluid in the blood.
- The opposite condition is hypovolemia, which is too little fluid volume in the blood.
- Occurs when the body retains more water than it needs.
What causes hypervolemia?

- disruption in the salt/water balance in the body
 - short term illness, injury or surgery
 - Intravenous Fluids
 - Injury/Illness/Surgery
 - can also be due to long-term health conditions.
 - Kidney Disease
 - Liver Disease
 - Heart Disease
What are the symptoms of hypervolemia?

The symptoms of hypervolemia are consistent with excess water in the body:

- Moist Cough
- Frothy Sputum
- Increased or Slowed Heart Rate
- Changes in Blood Pressure
- Swollen abdomen
- Shortness of Breath
symptoms of hypervolemia
Algorithm to classify and treat hypotonic hyponatremia with different extracellular fluid volumes based on a primary clinical assessment of the patient.
Electrolyte Imbalance
Considerations When Assessing Electrolyte Imbalances

- Electrolyte content of nutrition products (i.e., parenteral nutrition, enteral nutrition)
- Addition or removal of medications (i.e., spironolactone, furosemide, insulin)
- IV fluids and piggybacks (i.e., normal saline with potassium)
- Underlying disease states (i.e., acute renal injury, acid-base disorders)
Hypokalemia (<3.5 mEq/L)

- Pathophysiology –
 - Decrease in K+ causes decreased excitability of cells, therefore cells are less responsive to normal stimuli
Hypokalemia (<3.5 mEq/L)

- Contributing factors:
 - Diuretics
 - Shift into cells
 - Digitalis
 - Water intoxication
 - Corticosteroids
 - Diarrhea
 - Vomiting
K+

POTASSIUM

DEFICIT

* Alkalosis

* Shallow respirations

* Irritability

* Confusion

* Weakness

* Arrhythmias

* Lethargy

* Thready pulse

* ↓ Intestinal motility

© 1997 Nursing Education Consultancy
Hypokalemia (<3.5 mEq/L)

Interventions

- Assess and identify those at risk
- Encourage potassium-rich foods
- K+ replacement (IV or PO)
- Monitor lab values
- D/c potassium-wasting diuretics
- Treat underlying cause
Hyperkalemia (>5.0mEq/L)

- Pathophysiology – An inc. in K+ causes increased excitability of cells.
HYPERKALEMIA

* MUSCLE CRAMPS → WEAKNESS → PARALYSIS
* DROWSINESS
* ↓ BP
* EKG CHANGES
* DYSRHYTHMIAS
* ABDOMINAL CRAMPING
* DIARRHEA
* OLIGURIA

©1997 Nursing Education Consultante
Interventions/Treatment

- Restore Na levels to normal and prevent further decreases in Na.
- Drug Therapy –
 - (FVD) – IV therapy to restore both fluid and Na. If severe may see 2–3% saline.
 - (FVE) – Administer osmotic diuretic (Mannitol) to excrete the water rather than the sodium.
- Increase oral sodium intake and restrict oral fluid intake.
Hypernatremia (>145 mEq/L)

Contributing Factors

- Hyperaldosteronism
- Renal failure
- Corticosteroids
- Increase in oral Na intake
- Na containing IV fluids
- Decreased urine output with increased urine concentration
Hypernatremia (>145mEq/L)

- Contributing factors (cont’d):
 - Diarrhea
 - Dehydration
 - Fever
 - Hyperventilation
Assessment findings:
- Neuro – Spontaneous muscle twitches. Irregular contractions. Skeletal muscle weakness. Diminished deep tendon reflexes
- Resp. – Pulmonary edema
- CV – Diminished CO. HR and BP depend on vascular volume.
Hypernatremia (>145mEq/L)

GU – Dec. urine output. Inc. specific gravity

Skin – Dry, flaky skin. Edema r/t fluid volume changes.
Hypernatremia (>145mEq/L)

Interventions/Treatment

- **Drug therapy**
 - (FVD) .45% NSS. If caused by both Na and fluid loss, will administer NaCl. If inadequate renal excretion of sodium, will administer diuretics.

- **Diet therapy**
 - Mild – Ensure water intake
Hypocalcemia (<9.0mg/dL)

- Contributing factors:
 - Dec. oral intake
 - Lactose intolerance
 - Dec. Vitamin D intake
 - End stage renal disease
 - Diarrhea
Hypocalcemia (<9.0mg/dL)

- **Assessment findings:**
 - Neuro – Irritable muscle twitches.
 - Resp. – Resp. failure, muscle tetany.
 - CV – Decreased HR., decreased BP, diminished peripheral pulses
 - GI – Increased motility. Increased BS. Diarrhea
Hypercalcemia (>10.5mg/dL)

- Contributing factors:
 - Excessive calcium intake
 - Excessive vitamin D intake
 - Renal failure
 - Hyperparathyroidism
 - Malignancy
 - Hyperthyroidism
Assessment findings:

- **Neuro** – Disorientation, lethargy, coma, profound muscle weakness
- **Resp.** – Ineffective resp. movement
- **CV** – Increased HR, Increased BP., Bounding peripheral pulses, Positive Homan’s sign. Late Phase – Bradycardia, Cardiac arrest
- **GI** – Dec. motility. Dec. BS. Constipation
- **GU** – Inc. urine output. Formation of renal calculi
Interventions/Treatment

- Eliminate calcium administration
- Drug Therapy
 - Isotonic NaCL (Inc. the excretion of Ca)
 - Diuretics
 - Calcium reabsorption inhibitors (Phosphorus)
 - Cardiac Monitoring

Oral – Low–calcium diet
IV – Increased infusion of NS
Hypophosphatemia (<2.5mg/L)

Contributing Factors:
- Malnutrition
- Starvation
- Hypercalcemia
- Renal failure
- Uncontrolled DM
Hypophosphatemia (<2.5mg/L)

- Assessment findings
 - Neuro – Irritability, confusion
 - CV – Decreased contractility
 - Resp. – Shallow respirations
 - Musculoskeletal – destruction of muscle cells
 - Hematologic – Increased bleeding
 - Decreased platelet aggregation
Hypophosphatemia (<2.5mg/L)

- **Interventions**
 - Treat underlying cause
 - Oral replacement with vit. D
 - IV phosphorus (Severe)
 - Diet therapy
 - Foods high in oral phosphate
Hyperphosphatemia (>4.5mg/L)

- Causes few direct problems with body function. Care is directed to hypocalcemia.
- Rarely occurs
Hypomagnesemia (<1.4mEq/L)

Contributing factors:
- Malnutrition
- Starvation
- Diuretics
- Aminoglycoside antibiotics
- Hyperglycemia
- Insulin administration
Hypomagnesemia (<1.4 mEq/L)

- **Assessment findings:**
 - Neuro – Hyperreflexia. Seizures
 - CV – ECG changes. Dysrhythmias. HTN
 - Resp. – Shallow resp.
 - GI – Decreased motility. Anorexia. Nausea
Hypomagnesemia (<1.4mEq/L)

- Interventions:
 - Eliminate contributing drugs
 - IV MgSO4
 - Assess DTR’s hourly with MgSO4
 - Diet Therapy
Hypomagnesemia (<1.4mEq/L)

Contributing factors:
- Malnutrition
- Starvation
- Diuretics
- Aminoglcoside antibiotics
- Hyperglycemia
- Insulin administration
Hypomagnesemia (<1.4 mEq/L)

- **Assessment findings:**
 - *CV* – ECG changes. Dysrhythmias. HTN
Equations Used to Assess Electrolyte Abnormalities

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Normal Range</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected magnesium (Mg2+)</td>
<td>1.7 to 2.5 mg/dL</td>
<td>Serum Mg2+ x 0.005(40 - serum albumin mg/dL)</td>
</tr>
<tr>
<td>Corrected calcium</td>
<td>8.0 to 11.0 mg/dL</td>
<td>([4 - serum albumin (g/dL)] x 0.8) + measured calcium (mg/dL)</td>
</tr>
<tr>
<td>Total body water (TBW)</td>
<td>n/a</td>
<td>(men) = 0.6 L/kg x weight in kg (women) = 0.5 L/kg x weight in kg</td>
</tr>
<tr>
<td>Sodium deficit (mEq)</td>
<td>n/a</td>
<td>TBW x (140 – measured serum sodium concentration mEq/L)</td>
</tr>
<tr>
<td>Water deficit (in L)</td>
<td>n/a</td>
<td>TBW x ([serum sodium concentration mEq/L/140] – 1)</td>
</tr>
<tr>
<td>Serum osmolality (sOsm)</td>
<td>280 to 300 mOsm/L</td>
<td>(2 x serum sodium in mEq/L) + (serum glucose in mg/dL/18) + (BUN in mg/dL/2.8)</td>
</tr>
<tr>
<td>HCO3– deficit (mmol)</td>
<td>n/a</td>
<td>0.5 x ([HCO3–] normal – [HCO3–] measured)</td>
</tr>
</tbody>
</table>
Commonly Observed Symptoms During Electrolyte Imbalance

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Elevation</th>
<th>Depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Present in concentrations >11 mg/dL; lethargy, anorexia, nausea, vomiting, polyuria, confusion, coma</td>
<td>Hyperactive reflexes, muscle cramps numbness with tingling of fingers, tetany, convulsion</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Anorexia, nausea, vomiting, hyperactive reflexes, tetany, tachycardia, muscle weakness</td>
<td>Confusion, seizures, coma, chest pain, difficulty speaking or breathing, weakness, joint stiffness</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Nausea, vomiting, diaphoresis altered mental status, coma, muscle weakness</td>
<td>Weakness, lethargy, muscle cramps, mood changes, confusion, vomiting</td>
</tr>
<tr>
<td>Sodium</td>
<td>Increased thirst, fatigue, restlessness, muscle irritability, seizures, coma and death</td>
<td>Nausea, vomiting, headache, muscle cramps, disorientation, weakness, lethargy, confusion, dizziness, seizure, coma and death</td>
</tr>
<tr>
<td>Potassium</td>
<td>Muscle cramping, weakness, electrocardiographic changes, arrhythmia</td>
<td>Constipation, lethargy, weakness, leg cramps</td>
</tr>
</tbody>
</table>
Considerations for Treatment of Electrolyte Abnormalities

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Elevation</th>
<th>Depletion</th>
</tr>
</thead>
</table>
| Calcium | *Oral* – Low-calcium diet
IV – *Increased infusion of NS* | *Oral* – 1,000 to 1,500 mg/day
IV (*tetany present*)
10 to 20 mL of 10% calcium gluconate over ≥4 hrs |
| Phosphorus | *Oral* –
Low-phosphorus diet
Phosphate binders
IV
Assess the need for volume repletion | *Oral* –
Increased dietary intake
Oral supplementation (i.e., Na₃PO₄)
IV
Moderate • 0.32 to 0.64 mmol/kg (maximum, 30 mmol)Na₃PO₄ slowly over 6 hrs
IV (Severe) • 1 mmol/kg (maximum, 80 mmol) Na₃PO₄ slowly over 8 to 12 hrs |
| Magnesium | *Oral* | *Oral* |
World Health Organization ORS

<table>
<thead>
<tr>
<th>Substrate</th>
<th>mmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>90</td>
</tr>
<tr>
<td>Potassium</td>
<td>20</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>30</td>
</tr>
<tr>
<td>Chloride</td>
<td>80</td>
</tr>
<tr>
<td>Glucose</td>
<td>111</td>
</tr>
</tbody>
</table>
Ingredients

- 1 L (33 oz) water
- 3/4 tsp table salt (sodium chloride)
- 1 tsp baking power (or 2 tsp baking soda)
- 4 tbsp sugar (sucrose)
- 1/2 tsp 20% potassium chloride*
- Sugar-free Kool-AidR or Crystal LightR to taste

Directions

- Pour all ingredients into a blender or pitcher. Mix well.
Achieving acid–base balance

NORMAL ACID-BASE BALANCE
- Renal secretion of hydrogen & ammonia
- **RESPIRATORY ACIDOSIS:** Lungs fail to hyperventilate & remove CO₂ in blood
- **RESPIRATORY ALKALOSIS:** Hyperventilation lowers CO₂ in blood
- No secretion of hydrogen or ammonia by kidneys

HYPERVERVENTILATION: To remove excess carbon dioxide in the blood
- Excess acid ingested/formed from metabolism

SUCCESSFUL BUFFERING OF EXCESS ACID OR ALKALI BY SODIUM BICARBONATE OR CARBONIC ACID

HYPOVERVENTILATION: To increase carbon dioxide in the blood
- Excess alkali ingested/formed from metabolism

NORMAL ACID-BASE BALANCE
- **METABOLIC ACIDOSIS:** Kidneys excrete hydrogen ions & ammonia
- **METABOLIC ALKALOSIS:** No secretion of hydrogen ions & ammonia
Expected Changes in Primary Acid–Base Disorders

<table>
<thead>
<tr>
<th>Acid–Base Disorder</th>
<th>pH</th>
<th>Primary Change</th>
<th>Compensating Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic acidosis</td>
<td>↓</td>
<td>↓HCO3</td>
<td>↓ PCO2</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>↑</td>
<td>↑HCO3</td>
<td>↑ PCO2</td>
</tr>
<tr>
<td>Respiratory acidosis</td>
<td>↓</td>
<td>↑PCO2</td>
<td>↑ HCO3</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td>↑</td>
<td>↓PCO2</td>
<td>↓ HCO3</td>
</tr>
</tbody>
</table>

• **Acidosis**: process that lowers the extracellular fluid pH (reduction in HCO₃ or elevation in pCO₂)

• **Alkalosis**: process that raises extracellular pH (elevation in HCO₃ or fall in pCO₂)

- **Step 1: Analyze the pH**
 Normal blood pH is 7.4 ± 0.05, forming the range 7.35 to 7.45.

- **Step 2: Analyze the CO2**
 Normal Pco2 values are 35 to 45 mm Hg. Below 35 mm Hg is alkalotic; above 45 mm Hg is acidic.

- **Step 3: Analyze the HCO3**
 A normal HCO3 is 22 to 26 mEq/L. If the HCO3 is below 22 mEq/L, the patient is acidotic. If the HCO3 is above 26 mEq/L, the patient is alkalotic.

- **Step 4: Match the CO2 or the HCO3 with the pH**
 Matching either the Pco2 or the HCO3 with the pH can determine the acid–base disorder.
 - For example, if the pH is acidotic and the CO2 is acidotic, the acid–base disturbance is being caused by the respiratory system and represents respiratory acidosis. If the pH is alkalotic and the HCO3 is alkalotic, the acid–base disturbance is being caused by the metabolic (or renal) system and represents metabolic alkalosis.

- **Step 5: Does the CO2 or HCO3 go in the opposite direction of the pH?**
 If the CO2 or HCO3 goes in the opposite direction of the pH, compensation is occurring. For example, when the pH is acidotic, the CO2 is acidotic, and the HCO3 is alkalotic, the CO2 matches the pH, making the primary acid–base disorder respiratory acidosis. The HCO3 being the opposite of the pH is evidence of compensation from the metabolic system.

- **Step 6: Analyze the Po2 and the O2 saturation**
 If the PaO2 and O2 saturation are below normal, there is evidence of hypoxemia.
Conclusion

- Understanding the relationship between electrolytes and their movement within TBW during altered hydration status, electrolyte imbalances, or acid–base imbalance is key to developing a thorough nutrition plan care.
- With this knowledge, electrolyte abnormalities can be prevented or treated safely.
A diet rich in highly alkaline fruits and vegetables helps reduce a marker of metabolic acidosis and preserve kidney function in patients with chronic kidney disease. ... ACE inhibitors were given to patients to control blood pressure.

If your alkalosis is caused by a loss of chemicals such as chloride or potassium, you’ll be prescribed medications or supplements to replace these chemicals.

Some cases of alkalosis result from an electrolyte imbalance, which may be corrected by drinking plenty of fluids or drinks that contain electrolytes. If you have an advanced case of electrolyte imbalance, it will need to be treated in the hospital.